
DYNAMIC ENGINEERING
150 DuBois, Suite B & C

Santa Cruz, CA 95060
(831) 457-8891

https://www.dyneng.com
sales@dyneng.com

Est. 1988

PMC-Parallel-485

Windows 10 WDF Driver
Documentation

Developed with Windows Driver Foundation
Ver1.19

Revision 01p1 9/16/22
PMC: 10-1999-0305

https://www.dyneng.com/
mailto:dedra@dyneng.com

 Embedded Solutions Page 2

PMC-Parallel-485
WDF Device Drivers for
PMC-Parallel-485

Dynamic Engineering

150 DuBois, Suite B & C

Santa Cruz, CA 95060

(831) 457-8891

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and the
recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet
the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves the
right to make improvements or changes in the product described
in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without the
express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with PMC carriers
and compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious damage.

©1988-2022 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their respective
manufactures.

 Embedded Solutions Page 3

INTRODUCTION 4

Windows 10 Installation 5

IO Controls 6
IOCTL_PMC_PAR_485_SET_BASE_CONFIG 7
IOCTL_PMC_PAR_485_GET_BASE_CONFIG 7
IOCTL_PMC_PAR_485_REGISTER_EVENT 8
IOCTL_PMC_PAR_485_ENABLE_INTERRUPT 8
IOCTL_PMC_PAR_485_DISABLE_INTERRUPT 8
IOCTL_PMC_PAR_485_FORCE_INTERRUPT 9
IOCTL_PMC_PAR_485_SET_EDGE_LEVEL 9
IOCTL_PMC_PAR_485_GET_EDGE_LEVEL 9
IOCTL_PMC_PAR_485_SET_INT_MASK 9
IOCTL_PMC_PAR_485_GET_INT_MASK 9
IOCTL_PMC_PAR_485_SET_POLARITY 10
IOCTL_PMC_PAR_485_GET_POLARITY 10
IOCTL_PMC_PAR_485_SET_DIR_TERM 10
IOCTL_PMC_PAR_485_GET_DIR_TERM 10
IOCTL_PMC_PAR_485_SET_DATA_OUT 10
IOCTL_PMC_PAR_485_GET_DATA_OUT 11
IOCTL_PMC_PAR_485_READ_DIRECT 11
IOCTL_PMC_PAR_485_READ_FILTERED 11
IOCTL_PMC_PAR_485_GET_AND_CLEAR_ISR_STATUS 11
IOCTL_PMC_PAR_485_GET_ISR_STATUS 11
IOCTL_PMC_PAR_485_GET_SWITCH 12
IOCTL_PMC_PAR_485_SET_MASTER_INT_EN 12
IOCTL_PMC_PAR_485_CLEAR_MASTER_INT_EN 12

Utility Functions 13
Print Registers 13
Modify Registers 13

WARRANTY AND REPAIR 14

Service Policy 14
Support 14

For Service Contact: 14

Table of Contents

 Embedded Solutions Page 4

Introduction

The PMC-Parallel-485 driver was developed with the Windows Driver Foundation
version 1.19 (WDF) from Microsoft, specifically the Kernel-Mode Driver
Framework (KMDF).

“PMC-Parallel-485” features a Spartan II Xilinx FPGA to implement the PCI
interface, and IO processing, control and status for 32 differential IO. 50 MHz
reference can be used for the clock divider.

UserAp is a stand-alone code set with a simple and powerful menu plus a series
of tests that can be run on the installed hardware. Each of the tests execute calls
to the driver, pass parameters and structures, and get results back. With the
sequence of calls demonstrated, the functions of the hardware are utilized for
loop-back testing. The software is used for manufacturing test at Dynamic
Engineering. The test software can be ported to your application to provide a
running start. The tests are simple and will quickly demonstrate the end-to-end
operation of your application making calls to the driver and interacting with the
hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a
failure occurs and stop or to continue, to program a set number of loops to
execute and more. The user can add tests to the provided test suite to try out
application ideas before committing to your system configuration. In many cases
the test configuration will allow faster debugging in a more controlled
environment before integrating with the rest of the system.

UserAp is delivered with multiple example tests plus 2 utilities that may prove
useful in your debugging / integration. At the end of the UserAp menu is an item
“Print Registers”. When executed – select the appropriate “test” number in the
menu – the current contents of the registers are displayed. The structure for the
Base register is shown with the structure selection and current status. The
remainder are shown as hex numbers.

The second utility is “Modify Registers”. This utility allows the user to select a
register to change, shows the current contents and allows the user to change the
contents. The utility will allow multiple changes to the same register, switching to
a new register. For example, one can enable selected outputs, and set and
change the IO definition. In addition, there are quick start options to set the HW
up to output or input. Modify Registers can be used to create patterns on the IO
to interact with your system or to read the current state of your system IO.

 Embedded Solutions Page 5

When PMC-Parallel-485 is recognized by the PCI bus configuration utility it will
start the PMC-Parallel-485 driver to allow communication with the device. IO
Control calls (IOCTLs) are used to configure the board and read status. Read
and Write calls are used to move blocks of data in and out of the device.

Note - This documentation will provide information about all calls made to the
drivers, and how the drivers interact with the device for each of these calls. For
more detailed information on the hardware implementation, refer to the
PMC-Parallel-485 user manual as appropriate (also referred to as the hardware
manual).

There are several files provided in each driver package. These files include
PmcPar485Public.h, PmcPar485.inf, pmcpar485.cat, and PmcPar485.sys.
These files are in a folder within the UserAp file set.

PmcPar485Public.h is the C header file that defines the Application Program
Interface (API) for the PMC-Parallel-485 driver. This file is required at compile
time by any application that wishes to interface with the drivers, but is not needed
for driver installation. This file is included with the UserAp file set.

Windows 10 Installation

Copy PmcPar485.inf, pmcpar485.cat, and PmcPar485.sys (Win10 version) to a
CD, USB memory device, or local directory as preferred.

With the PMC-Parallel-485 hardware installed, power-on the host computer.

• Open the Device Manager from the control panel.

• Under Other devices there should be an Other PCI Bridge Device*.

• Right-click on the Other PCI Bridge Device and select Update Driver
Software.

• Select Browse my computer for driver software.

• Select Navigate to the folder or device. If at the root select the sub folders
button.

• Select Next.

• Select Close to close the update window.
The system should now display the PMC-Parallel-485 adapter in the Device
Manager.

* If the Other PCI Bridge Device is not displayed, click on the Scan for
hardware changes icon on the tool-bar.

 Embedded Solutions Page 6

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile() function
call and passing in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID),
which are defined in PmcPar485Public.h. See main.c in the PmcPar485UserAp
project for an example of how to acquire a handle to the device.

The main file provided is designed to work with our test menu and includes user
interaction steps to allow the user to select which board is being tested in a
multiple board environment. The integrator can hardcode for single board
systems or use an automatic loop to operate in multiple board systems without
using user interaction. For multiple user systems it is suggested that the board
number is associated with a switch setting so the calls can be associated with a
particular board from a physical point of view.

IO Controls

The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer
to a single Device Object, which controls a single board or I/O channel. IOCTLs
are called using the Win function DeviceIoControl(), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(

 HANDLE hDevice, // Handle opened with CreateFile()

 DWORD dwIoControlCode, // Control code defined in API header

file

 LPVOID lpInBuffer, // Pointer to input parameter

 DWORD nInBufferSize, // Size of input parameter

 LPVOID lpOutBuffer, // Pointer to output parameter

 DWORD nOutBufferSize, // Size of output parameter

 LPDWORD lpBytesReturned, // Pointer to return length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped

structure

); // used for asynchronous I/O

 Embedded Solutions Page 7

The IOCTLs defined for the PMC-Parallel-485 driver are described below:
23 currently defined.

IOCTL_PMC_PAR_485_GET_INFO
Function: Returns the device driver version, Xilinx flash revision, user switch value,
Type, and device instance number.
Input: None
Output: PMC_PAR_485_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch
selected by the user (see the board silk screen for bit position and polarity).
Instance number is the zero-based device number. Revision Major and Revision
Minor represent the current Flash revision Major. Minor. See the definition of
PMC_PAR_485_DRIVER_DEVICE_INFO below.

typedef struct _PMC_PAR_485_DRIVER_DEVICE_INFO {
 ULONG InstanceNumber;
 UCHAR DriverVersion;
 UCHAR RevisionMajor;
 UCHAR RevisionMinor;
 UCHAR SwitchValue;
} PMC_PAR_485_DRIVER_DEVICE_INFO, *PPMC_PAR_485_DRIVER_DEVICE_INFO;

IOCTL_PMC_PAR_485_SET_BASE_CONFIG

Function: Set the base register configuration
Input: Base register parameters PMC_PAR_485_BASE_CONFIG
Output: None
Notes: See definition of PMC_PAR_485_BASE_CONFIG & CLK_PRE_SEL
below. See Hardware manual for control bit map.

IOCTL_PMC_PAR_485_GET_BASE_CONFIG

Function: Return the base register configuration
Input: None
Output: Base register parameters PMC_PAR_485_BASE_CONFIG
Notes: See definition of PMC_PAR_485_BASE_CONFIG & CLK_PRE_SEL
below. See Hardware manual for control bit map.

 Embedded Solutions Page 8

typedef struct _PMC_PAR_485_BASE_CONFIG {
 USHORT ClkDiv; // bits 11-0 Clock Rate Divisor
 BOOLEAN ClkPostSel; // bit 12 '1' for Divided clock else input selected
 CLK_PRE_SEL ClkPreSel;// unsigned int ClkPreSel : 2;
 // bits 14-13 00 = 0, 01 = osc, 10 = ext, 11 = PCI
 BOOLEAN ClkExtDir; // bit 15 '1' = out
 BOOLEAN ClkEnInt; // bit 16 1 = enable
 BOOLEAN ClkEnSel; // bit 17 1 = use External Clock enable, 0 =Internal

} PMC_PAR_485_BASE_CONFIG, * PPMC_PAR_485_BASE_CONFIG;

typedef enum _CLK_PRE_SEL {
 CLK_STATIC,
 CLK_OSC,
 CLK_EXT,
 CLK_PCI
} CLK_PRE_SEL, * PCLK_PRE_SEL;

IOCTL_PMC_PAR_485_REGISTER_EVENT

Function: Register an Event object to be signaled when an interrupt occurs
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a
system pointer to the event and signals the event when an interrupt is serviced.

IOCTL_PMC_PAR_485_ENABLE_INTERRUPT

Function: Enable the user interrupts - Set Master Int Enable
Input: None
Output: None
Notes: This IOCTL is used in the user interrupt processing function to begin
interrupt processing or to re-enable the interrupts after they were disabled in the
driver interrupt service routine.

IOCTL_PMC_PAR_485_DISABLE_INTERRUPT

Function: Disable the Master Interrupt enable
Input: None
Output: None
Notes: This IOCTL is used when interrupt processing is no longer desired.

 Embedded Solutions Page 9

IOCTL_PMC_PAR_485_FORCE_INTERRUPT

Function: Cause an interrupt
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus provided the interrupts
are enabled. This IOCTL is used for development, to test interrupt processing.

IOCTL_PMC_PAR_485_SET_EDGE_LEVEL

Function: Writes a value to the edge/level registers
Input: ULONG
Output: None
Notes: When an edge enable bit is a '1', the corresponding data bit will be
latched when an edge occurs, provided its mask bit is enabled. If the bit is a '0',
the level of the signal is used. The polarity of the edge or level depends on the
state of the corresponding bit in the polarity register.

IOCTL_PMC_PAR_485_GET_EDGE_LEVEL

Function: Reads the value from the edge/level registers
Input: None
Output: ULONG
Notes: When an edge enable bit is a '1', the corresponding data bit will be
latched when an edge occurs, provided its mask bit is enabled. If the bit is a '0',
the level of the signal is used. The polarity of the edge or level depends on the
state of the corresponding bit in the polarity register.

IOCTL_PMC_PAR_485_SET_INT_MASK

Function: Writes a value to the interrupt enable registers
Input: ULONG
Output: None
Notes: Input bits can be monitored and kept from being active by setting the
corresponding mask bit.

IOCTL_PMC_PAR_485_GET_INT_MASK

Function: Reads the value from the interrupt enable registers
Input: None
Output: ULONG
Notes: Input bits can be monitored and kept from being active by setting the
corresponding mask bit.

 Embedded Solutions Page 10

IOCTL_PMC_PAR_485_SET_POLARITY

Function: Write a value to the polarity registers
Input: ULONG
Output: None
Notes: If an input bit is active low then the corresponding polarity bit should be
set to '1'. The data input latch will capture the level of a signal. Active low signals
should be inverted to capture the active state.

IOCTL_PMC_PAR_485_GET_POLARITY

Function: Read the value from the polarity registers
Input: None
Output: ULONG
Notes: If the corresponding edge enable bit is set, then a '1' indicates a falling
edge and a '0' indicates a rising edge. 1=invert, 0=normal.

IOCTL_PMC_PAR_485_SET_DIR_TERM

Function: Write a value to the direction termination registers
Input: ULONG
Output: None
Notes: Value of the termination registers sets the direction for each of the 32
differential pairs

IOCTL_PMC_PAR_485_GET_DIR_TERM

Function: Read the value from the direction Termination registers
Input: None
Output: ULONG
Notes: See hardware manual for PMC-Parallel-485 direction termination control
bit map.

IOCTL_PMC_PAR_485_SET_DATA_OUT

Function: Writes a value to the output data registers
Input: ULONG
Output: None
Notes: Sets the 32 bits of the Xilinx internal register, and appears on the output
diver within two clock periods of being written.

 Embedded Solutions Page 11

IOCTL_PMC_PAR_485_GET_DATA_OUT

Function: Reads the value from the output data registers
Input: None
Output: ULONG
Notes: pmc_par485_dataout is a Xilinx internal register, and which outputs data
written to it after two clock periods of being written.

IOCTL_PMC_PAR_485_READ_DIRECT

Function: Read the direct input data
Input: None
Output: ULONG
Notes: Returns the “natural” data located at the input port, unaltered by Polarity,
Interrupt Enable, or Level bits.

IOCTL_PMC_PAR_485_READ_FILTERED

Function: Read the Filtered input data
Input: None
Output: ULONG
Notes: XIO after Polarity, Interrupt Enable, Level bits selected - active level
interrupter.

IOCTL_PMC_PAR_485_GET_AND_CLEAR_ISR_STATUS

Function: Return the interrupt status read in the last ISR
Input: None
Output: PMC_PAR_485_ISR_STAT
Notes: PMC_PAR_485_ISR_STAT structure with Filtered data plus Status
register.

IOCTL_PMC_PAR_485_GET_ISR_STATUS

Function: Return the interrupt status read in the last ISR
Input: None
Output: PMC_PAR_485_ISR_STAT
Notes: PMC_PAR_485_ISR_STAT structure with Filtered data plus Status
register.
typedef struct _PMC_PAR_485_ISR_STAT {
 ULONG InterruptStatus;
 ULONG FilteredData;
} PMC_PAR_485_ISR_STAT, * PPMC_PAR_485_ISR_STAT;

 Embedded Solutions Page 12

IOCTL_PMC_PAR_485_GET_SWITCH

Function: Return the 8-bit switch configuration
Input: None
Output: PMC_PAR_485_USER_SWITCH
Notes: See hardware manual for PMC_PAR_485_USER_SWITCH register
address.

IOCTL_PMC_PAR_485_SET_MASTER_INT_EN

Function: Enable the Master Interrupt
Input: DEVICE_EXTENSION
Output: None
Notes:

IOCTL_PMC_PAR_485_CLEAR_MASTER_INT_EN

Function: Disable the Master Interrupt
Input: DEVICE_EXTENSION
Output: None
Notes:

 Embedded Solutions Page 13

Utility Functions

Print Registers

Function: Displays 32-bit register contents in Hex notation and expands any register
structs onto terminal screen.
Notes: See Hardware manual for breakdown of any register structure and bit
mapping.

Modify Registers

Function: Lists each “Writable” register, and it’s 32-bit hex content for user to select
from and modify. Displays each 32-bit “Read Only” register content in Hex notation.
Options:

- Set individual bits mapped to attributes of register struct

- Update entire register with new hex value from user input.

- Toggle register back and forth between two hex values.

- Apply default register values that enable specific tasks.
Ex. Default Read, Default Write, Reset

Notes: See Hardware manual for breakdown of any register structure and bit
mapping.

 Embedded Solutions Page 14

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered
and options.
https://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at
fault. The driver has gone through extensive testing, and in most cases, it will be
“cockpit error” rather than an error with the driver. When you are sure or at least
willing to pay to have someone help then call or e-mail and arrange to work with
an engineer. We will work with you to determine the cause of the issue.

Support

The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with
the documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special
software development, or whatever you need to get going.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite B & C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

https://www.dyneng.com/warranty.html
mailto:sales@dyneng.com

